AGC032
A - Limited Insertion
这题就是从后面找一个最靠后而且当前可以放的,可以放的条件是它的前面正好放了它的数值-1个数
如果不符合条件就退出
#include#define fi first#define se second#define pii pair #define mp make_pair#define pb push_back#define space putchar(' ')#define enter putchar('\n')#define eps 1e-10#define MAXN 200005//#define ivorysiusing namespace std;typedef long long int64;typedef unsigned int u32;typedef double db;template void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f;}template void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int a[MAXN],N,cnt[MAXN];bool vis[MAXN];void Solve() { read(N); for(int i = 1 ; i <= N ; ++i) read(a[i]); for(int i = 1 ; i <= N ; ++i) { int cnt = 0; for(int j = 1 ; j < i ; ++j) { if(a[j] <= a[i]) ++cnt; } if(cnt + 1 < a[i]) {puts("-1");return;} } for(int i = 1 ; i <= N ; ++i) { cnt[0] = 0; for(int j = 1 ; j <= N ; ++j) cnt[j] = cnt[j - 1] + vis[j]; for(int j = N ; j >= 1 ; --j) { if(!vis[j] && cnt[j - 1] + 1 == a[j]) { vis[j] = 1; out(a[j]);enter; break; } } }}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve(); return 0;}
B - Balanced Neighbors
如果是偶数个,分成和相等的\(\frac{N}{2}\)份
如果是奇数个,最后一个点单独为一组,前\(N - 1\)个两个一组分成和相等的\(\frac{N - 1}{2}\)份
然后把一组作为一个点,建一个完全图,两组(一组1,2,一组3,4)之间连边就是
1-2,1-4,2-3,2-4
#include#define fi first#define se second#define pii pair #define mp make_pair#define pb push_back#define space putchar(' ')#define enter putchar('\n')#define eps 1e-10#define MAXN 200005//#define ivorysiusing namespace std;typedef long long int64;typedef unsigned int u32;typedef double db;template void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f;}template void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int N;vector v;void Solve() { read(N); if(N & 1) { for(int i = 1 ; i < N ; ++i) { v.pb(mp(i,N)); } --N; } for(int i = 1 ; i <= N ; ++i) { for(int j = i + 1 ; j <= N ; ++j) { if(i + j != N + 1) v.pb(mp(i,j)); } } out(v.size());enter; for(auto t : v) { out(t.fi);space;out(t.se);enter; }}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve(); return 0;}
C - Three Circuits
必定存在一个欧拉回路
如果一个点有六个或以上点度必定存在
如果有三个点以上有四个点度必定存在
如果只有两个点有四个点度
那么如果这四条路都在这两个点之间,那么就无解
否则有解
#include#define fi first#define se second#define pii pair #define mp make_pair#define pb push_back#define space putchar(' ')#define enter putchar('\n')#define eps 1e-10#define MAXN 100005//#define ivorysiusing namespace std;typedef long long int64;typedef unsigned int u32;typedef double db;template void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f;}template void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}struct node { int to,next;}E[MAXN * 2];int head[MAXN],sumE;int N,M;int cnt[MAXN];bool vis[MAXN];void add(int u,int v) { E[++sumE].to = v; E[sumE].next = head[u]; head[u] = sumE;}void dfs(int u) { vis[u] = 1; for(int i = head[u] ; i ; i = E[i].next) { int v = E[i].to; if(!vis[v]) dfs(v); }}void Solve() { read(N);read(M); int a,b; for(int i = 1 ; i <= M ; ++i) { read(a);read(b); cnt[a]++;cnt[b]++; add(a,b);add(b,a); } for(int i = 1 ; i <= N ; ++i) { if(cnt[i] & 1) {puts("No");return;} } int t = 0; int p = 0,q = 0; for(int i = 1 ; i <= N ; ++i) { if(cnt[i] >= 6) {puts("Yes");return;} if(cnt[i] >= 4) { ++t; if(!p) p = i; else if(!q) q = i; } } if(t > 2) {puts("Yes");return;} if(t == 2) { vis[p] = 1; dfs(q); for(int i = 1 ; i <= N ; ++i) { if(!vis[i]) {puts("Yes");return;} } } puts("No");}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve(); return 0;}
D - Rotation Sort
把操作改成数轴上,我可以把一个点移动到左边或右边任意一个位置上,可以不必要是整数点
显然对于每个点操作只进行一次
然后拆成\((-\infty,1),(1,2),(2,3),(3,4)....(N - 1,N),(N,+\infty)\)和整数点\(1,2,3,4,5,6..N\)
然后根据位置dp即可
#include#define fi first#define se second#define pii pair #define mp make_pair#define pb push_back#define space putchar(' ')#define enter putchar('\n')#define eps 1e-10#define MAXN 5005//#define ivorysiusing namespace std;typedef long long int64;typedef unsigned int u32;typedef double db;template void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f;}template void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int N;int64 A,B;int64 dp[MAXN][2 * MAXN],s[MAXN][2 * MAXN];int p[MAXN],pos[MAXN];void Solve() { read(N);read(A);read(B); for(int i = 1 ; i <= N ; ++i) {read(p[i]);pos[p[i]] = i;} for(int i = 1 ; i <= N ; ++i) { s[i][0] = 1e18; for(int j = 1 ; j <= 2 * N + 1 ; ++j) { if(j & 1) { dp[i][j] = s[i - 1][j] + (j < pos[i] * 2 ? B : A); } else { dp[i][j] = s[i - 1][j - 1] + (j != pos[i] * 2 ? (j < pos[i] * 2 ? B : A): 0); } s[i][j] = min(s[i][j - 1],dp[i][j]); } } out(s[N][2 * N + 1]);enter;}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve(); return 0;}
E - Modulo Pairing
用蓝色表示相加小于M的,红色表示大于M的
然后就会变成前面是蓝的,后面是红的
简单分析发现蓝的越小越好,红的越大越好,所以求出能向左最长的红色序列
#include#define fi first#define se second#define pii pair #define mp make_pair#define pb push_back#define space putchar(' ')#define enter putchar('\n')#define eps 1e-10#define MAXN 200005//#define ivorysiusing namespace std;typedef long long int64;typedef unsigned int u32;typedef double db;template void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f;}template void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}int N,M;int a[MAXN];void Solve() { read(N);read(M); for(int i = 1 ; i <= 2 * N ; ++i) read(a[i]); sort(a + 1,a + 2 * N + 1); int r = -1; for(int i = 2 * N ; i >= 1 ; --i) { int t = lower_bound(a + 1,a + 2 * N + 1,M - a[i]) - a; if((t & 1) == (i & 1)) ++t; if(r == -1) r = i + t; else r = max(r,i + t); } if(r == -1) r = 4 * N + 1; int ans = 0; for(int i = 2 * N ; i >= 1 ; --i) { if(r - i < i) ans = max(ans,(a[i] + a[r - i]) % M); else break; } r = 1 + r - 2 * N - 1; for(int i = 1 ; i <= 2 * N ; ++i) { if(i < r - i) ans = max(ans,a[i] + a[r - i]); else break; } out(ans);enter;}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve(); return 0;}
F - One Third
切一刀,画一条红线,然后正120画一条蓝线,反120画一条绿线
我们要求的就是任意1/3中最短两个颜色不同之间的线的角度大小
然后我们取第一刀红线和蓝线之间的 1/3区间,然后里面被分成了\(N\)份,我们递推一个\(f(i)\),表示有\(i\)份左右两边区间颜色不同的概率
然后\(g(i)\)表示\(i\)份中最短的一段的期望长度,\(\frac{1}{3}\)长度里\(N\)份中选\(i\)份期望长度是\(\frac{i}{3N}\),可以认为分成\(N\)份中选\(i\)份每个点被选中的概率是\(\frac{i}{N} = \frac{\binom{i - 1}{N - 1}}{\binom{i}{N}}\)
那\(i\)段中的期望最小长度呢
是\(E(min) = \int_{t = 0}^{1/i}P(min \geq t) dt = \int_{t = 0}^{1/i}(1 - it)^{i - 1}dt = \int_{t = 0}^{1}\frac{t^{i - 1}}{i} dt = \frac{1}{i^2}\)
所以\(g(i) = \frac{1}{3iN}\)
答案就是所有的\(f(i)g(i)\)的和
#include#define fi first#define se second#define pii pair #define mp make_pair#define pb push_back#define space putchar(' ')#define enter putchar('\n')#define eps 1e-10#define MAXN 1000005//#define ivorysiusing namespace std;typedef long long int64;typedef unsigned int u32;typedef double db;template void read(T &res) { res = 0;T f = 1;char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { res = res * 10 +c - '0'; c = getchar(); } res *= f;}template void out(T x) { if(x < 0) {x = -x;putchar('-');} if(x >= 10) { out(x / 10); } putchar('0' + x % 10);}const int MOD = 1000000007;int N;int f[MAXN][3],g[MAXN],fac[MAXN],invfac[MAXN],inv[MAXN];int inc(int a,int b) { return a + b >= MOD ? a + b - MOD : a + b;}int mul(int a,int b) { return 1LL * a * b % MOD;}int fpow(int x,int c) { int res = 1,t = x; while(c) { if(c & 1) res = mul(res,t); t = mul(t,t); c >>= 1; } return res;}int C(int n,int m) { if(n < m) return 0; return mul(fac[n],mul(invfac[m],invfac[n - m]));}void Solve() { read(N); fac[0] = 1; for(int i = 1 ; i <= N; ++i) fac[i] = mul(fac[i - 1],i); invfac[N] = fpow(fac[N],MOD - 2); for(int i = N - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1); inv[1] = 1; for(int i = 2 ; i <= 1000000 ; ++i) inv[i] = mul(inv[MOD % i],MOD - MOD / i); f[0][0] = 1; int iv3= fpow(inv[3],N - 1); int ans = 0; for(int i = 1 ; i <= N ; ++i) { f[i][1] = inc(f[i - 1][0],f[i - 1][2]); f[i][0] = inc(f[i - 1][1],f[i - 1][2]); f[i][2] = inc(f[i - 1][0],f[i - 1][1]); g[i] = mul(mul(inv[3],inv[N]),inv[i]); int p = mul(mul(f[i][1],C(N,i)),iv3); ans = inc(ans,mul(g[i],p)); } out(ans);enter;}int main() {#ifdef ivorysi freopen("f1.in","r",stdin);#endif Solve();}